Faradaic and Capacitive Components of the CNT Electrochemical Responses

نویسندگان

  • Toribio F. Otero
  • Jose G. Martinez
  • Kinji Asaka
چکیده

The nature of the electrochemical responses from carbon nanotubes (CNTs), capacitive (physical), or Faradaic (chemical, also named p-doping or n-doping) remain controversial. In this chapter, the literature is reviewed and discussed trying to elucidate if some of the two processes prevails, how the presence of chemical reactions can be elucidated and which properties, specific from the chemical processes, can be exploited. Different electrochemical responses and theories trying to explain those responses are discussed. The separation and quantification methodologies of the capacitive and Faradaic components involved in some electrochemical responses from CNTs are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing chemical induced cellular stress by non-Faradaic electrochemical impedance spectroscopy using an Escherichia coli capacitive biochip.

A new capacitive biochip was developed using carboxy-CNT activated gold interdigitated (GID) capacitors immobilized with E. coli cells for the detection of cellular stress caused by chemicals. Here, acetic acid, H(2)O(2) and NaCl were employed as model chemicals to test the biochip and monitored the responses under AC electrical field by non-Faradaic electrochemical impedance spectroscopy (nFEI...

متن کامل

Nanoflaky MnO2/functionalized carbon nanotubes for supercapacitors: an in situ X-ray absorption spectroscopic investigation.

The surfaces of acid- and amine-functionalized carbon nanotubes (C-CNT and N-CNT) were decorated with MnO2 nanoflakes as supercapacitors by a spontaneous redox reaction. C-CNT was found to have a lower edge plane structure and fewer defect sites than N-CNT. MnO2/C-CNT with a highly developed surface area exhibited favorable electrochemical performance. To determine the atomic/electronic structu...

متن کامل

A new interpretation of electrochemical impedance spectroscopy to measure accurate doping levels for conducting polymers: Separating Faradaic and capacitive currents

We report an electrochemical impedance spectroscopy (EIS) based method to measure the doping level of conducting polymers. Using EIS the Faradaic current and the capacitive charging current can be separated without relying on any unverifiable assumptions. We demonstrate the method for three types of conducting polymer thin films that are the basis for many commercial applications (poly(3,4ethyl...

متن کامل

Deviations of capacitive and inductive loops in the electrochemical impedance of a dissolving iron electrode.

The electrochemical impedance of an iron electrode often shows the capacitive and inductive loops on the complex plane. The capacitive loop originates from the time constant of the charge transfer resistance and the electric double layer capacitance. The inductive loop is explained by Faradaic processes involving the reaction intermediate. In some cases, these loops deviate from a true semicirc...

متن کامل

Comparative Study of Nanostructured Zr-Fe2O3 and CNT Modified Zr-Fe2O3 Thin Films for Photo Electrochemical Generation of Hydrogen

Nanostructured hematite thin films are doped with zirconium successfully and also modified by introducing CNT using sol-gel method for their implementation as photo-electrode in photo-electrochemical (PEC) cell for hydrogen generation. XRD, UV-visible spectroscopy and PEC study techniques are used to characterize the thin films. The PEC responses of thin films are improved by introducing carbon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016